Difference between revisions of "DoLoops performance in Fortran"
From MohidWiki
(→Conclusions) |
|||
Line 296: | Line 296: | ||
====Results==== | ====Results==== | ||
<webimage>http://content.screencast.com/users/GRiflet/folders/Jing/media/136f62db-a24f-4315-9eae-f4bcd9110d4e/2010-10-22_1553.png</webimage> | <webimage>http://content.screencast.com/users/GRiflet/folders/Jing/media/136f62db-a24f-4315-9eae-f4bcd9110d4e/2010-10-22_1553.png</webimage> | ||
+ | |||
+ | === MOHID === | ||
+ | |||
+ | The MOHID parallelization is a complex matter because: | ||
+ | * Time keeping is hard to keep with due to the fact that CPU time is the sum of the computation time of each thread. | ||
+ | * Do loops that parallelize very well in small programs add a lot of overhead in big programs like MOHID and actually tend to decrease performance. | ||
+ | |||
+ | This wiki-entry comments which loops are efficiently parallelized in each module. | ||
+ | |||
+ | ==== Test-case==== | ||
+ | A 1 hour run of the PCOMS is made, which takes around '''950s''' without parallelization. | ||
+ | |||
+ | ==== ModuleFunctions ==== | ||
+ | * Every $OMP PARALLEL DO directive added in the do-loops(k,j,i) yield an bigger Total Computation time ('''1028s'''). Thus, there is no interest in parallelizing ModuleFunctions. | ||
+ | |||
+ | ==== ModuleGeometry ==== | ||
+ | |||
+ | ==== ModuleMap ==== | ||
[[Category:programming]] | [[Category:programming]] | ||
[[Category:fortran]] | [[Category:fortran]] |
Revision as of 18:46, 22 October 2010
What is the best performance that Fortran can give when computing do-loops over large matrices? A single triple-do-loop test-case was implemented with matrix size ranging from 1M to 216M four-byte units. The test-case below shows:
- a 400% performance increase when looping with the order (k,j,i) instead of looping with the order (i,j,k),
- that a 300% performance increase occur when using openmp directives in a quad-core processor (i7-870),
- that changing the chunk size or alternating between static and dynamic scheduling yield less than 10% differences in performance. Best performance is obtained, for this test-case, with a small dynamic chunk.
Contents
Test-cases
Simple triple do-loop
Description
Performs a triple-do-loop with a simple computation over a cubic matrix. Size is chosen by the user through standard input.
Hardware
- Intel Core i7 - 870
- 8 GB Ram
Code
- The main program
program DoloopsOpenmp use moduleDoloopsOpenmp, only: makeloop implicit none integer, dimension(:,:,:), pointer :: mycube integer :: M = 1 real :: elapsedtime real :: time = 0.0 do while (M < 1000) write(*,*) 'Insert the cube size M (or insert 1000 to exit): ' read(*,*) M if (M > 999) exit allocate(mycube(1:M,1:M,1:M)) !Tic() time = elapsedtime(time) call makeloop(mycube) !Toc() time = elapsedtime(time) write(*,10) time write(*,*) deallocate(mycube) nullify(mycube) end do 10 format('Time elapsed: ',F6.2) end program DoloopsOpenmp !This function computes the time real function elapsedtime(lasttime) integer :: count, count_rate real :: lasttime call system_clock(count, count_rate) elapsedtime = count * 1.0 / count_rate - lasttime end function elapsedtime
- The module
module moduleDoloopsOpenmp use omp_lib implicit none private public :: makeloop contains subroutine makeloop(cubicmatrix) !Arguments -------------- integer, dimension(:,:,:), pointer :: cubicmatrix !Local variables -------- integer :: i, j, k, lb, ub lb = lbound(cubicmatrix,3) ub = ubound(cubicmatrix,3) !$OMP PARALLEL PRIVATE(i,j,k) !$OMP DO do k = lb, ub do j = lb, ub do i = lb, ub cubicmatrix(i,j,k) = cubicmatrix(i,j,k) + 1 end do end do end do !$OMP END DO !$OMP END PARALLEL end subroutine makeloop end module moduleDoloopsOpenmp
Results
- Full results
- Looking only at the results with STATIC/DYNAMIC/CHUNK variations.
---------------------------- DO (i,j,k) / NO CHUNK ---------------------------- Table A.1 - Debug do(i,j,k) Size Time 100 0.04 200 0.37 300 1.58 400 7.60 500 19.66 600 41.65 Table A.2 - Debug openmp without !$OMP PARALLEL directives do(i,j,k) Size Time 100 0.04 200 0.37 300 1.58 400 7.27 500 19.34 600 41.34 Table A.3 - Debug openmp with one !$OMP PARALLEL DO directive do(i,j,k) Size Time 100 0.02 200 0.19 300 0.70 400 1.86 500 4.05 600 7.83 ---------------------------- DO (k,j,i) / NO CHUNK ---------------------------- Table B.1 - Debug do(k,j,i) Size Time 100 0.04 200 0.31 300 1.22 400 3.36 500 7.55 600 14.88 Table B.2 - Debug openmp without !$OMP PARALLEL directives do(k,j,i) Size Time 100 0.04 200 0.31 300 1.21 400 3.36 500 7.82 600 15.07 Table B.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.09 300 0.36 400 0.94 500 2.04 600 3.89 ---------------------------- DO (k,j,i) / STATIC CHUNK = (UBOUND - LBOUND) / NTHREADS + 1 ---------------------------- Table C.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.15 300 0.42 400 1.03 500 2.12 600 3.97 ---------------------------- DO (k,j,i) / STATIC CHUNK = 10 ---------------------------- Table D.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.16 300 0.43 400 1.04 500 2.18 600 4.05 ---------------------------- DO (k,j,i) / DYNAMIC CHUNK = 10 ---------------------------- Table E.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.01 200 0.10 300 0.36 400 0.93 500 2.01 600 3.89 ---------------------------- DO (k,j,i) / DYNAMIC CHUNK = (UBOUND - LBOUND) / NTHREADS + 1 ---------------------------- Table F.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.09 300 0.39 400 1.04 500 2.14 600 4.00
Conclusions
- do(k,j,i) Vs do(i,j,k) ==> 2 to 4 times faster!
- dynamic small chunks, or no chunk at all yield 10% increased performance over large dynamic chunks. Probably better off with no-chunk.
- More test-cases representing different scenarios of do-loops may yield different choices of CHUNK/scheduling.
SetMatrix3D_Constant
Description
This subroutine is in the ModuleFunctions of MohidWater. In the context of MohidWater, parallelizing this subroutine yields a worse performance. However, in the little test program, the same OMP directives yield quite good results.
Hardware
- Core i7-870
- 8 GB RAM
Code
real function SetMatrixValues3D_R8_Constant (Matrix, Valueb, MapMatrix) !Arguments------------------------------------------------------------- real, dimension(:, :, :), pointer :: Matrix real, intent (IN) :: Valueb integer, dimension(:, :, :), pointer, optional :: MapMatrix !Local----------------------------------------------------------------- integer :: i, j, k integer :: ilb, iub, jlb, jub, klb, kub !Begin----------------------------------------------------------------- ilb = lbound(Matrix,1) iub = ubound(Matrix,1) jlb = lbound(Matrix,2) jub = ubound(Matrix,2) klb = lbound(Matrix,3) kub = ubound(Matrix,3) !griflet: omp slowdown if (present(MapMatrix)) then !$OMP PARALLEL DO PRIVATE(i,j,k) do k = klb, kub do j = jlb, jub do i = ilb, iub if (MapMatrix(i, j, k) == 1) then Matrix (i, j, k) = Valueb endif enddo enddo enddo !$OMP END PARALLEL DO else !$OMP PARALLEL DO PRIVATE(i,j,k) do k = klb, kub do j = jlb, jub do i = ilb, iub Matrix (i, j, k) = Valueb enddo enddo enddo !$OMP END PARALLEL DO endif SetMatrixValues3D_R8_Constant = sumMatrix3D(Matrix) end function SetMatrixValues3D_R8_Constant
Results
MOHID
The MOHID parallelization is a complex matter because:
- Time keeping is hard to keep with due to the fact that CPU time is the sum of the computation time of each thread.
- Do loops that parallelize very well in small programs add a lot of overhead in big programs like MOHID and actually tend to decrease performance.
This wiki-entry comments which loops are efficiently parallelized in each module.
Test-case
A 1 hour run of the PCOMS is made, which takes around 950s without parallelization.
ModuleFunctions
- Every $OMP PARALLEL DO directive added in the do-loops(k,j,i) yield an bigger Total Computation time (1028s). Thus, there is no interest in parallelizing ModuleFunctions.