Personal tools

Mohid Ocean Downscalling

From MohidWiki

Revision as of 15:19, 28 May 2013 by MSMalhadas (talk | contribs) (Bathymetry transition)
Jump to: navigation, search

Download

The area extracted from NOAA/GFS and MyOcean/RTOFS must be bigger than that the area of MOHID level domain choosen to impose the surface and ocean boundary conditions.

NOOA/GFS

To download GFS model solution go to http://nomads.ncdc.noaa.gov/cgi-bin/ncdc-ui/define-collection.pl?model_sys=gfs4&model_name=gfs&grid_name=4. Then select date range(Ex.: 2013 April 15 To 2013 April 20), select cycles (Ex.: 0000), select forecast hours (Ex.: 003 006 009 012 015 018 021 024). Press Submit Data request button and Press Selected Files for FTP. On the Filename Filter Type “*.grb2” and press Select files button. Then select the levels desired and at FTP Information, type your email and press the start FTP button. This will place the files in the ftp for download.

NOTES : This is a 24 hour period with all the necessary properties for Mohid, the best forecast for each day in the range. The 000 output is neglected because some properties are 3 hour average, for instance “downward solar radiation” isn’t present. For this 000 is subtracted and the 024 added.

MyOcean

To download my ocean solution go to http://www.myocean.eu/. and click in ACCES THE CATALOGUE. In block 1 choose "Global Ocean", in 2 the parameters and in 3 choose forecast products. After fill all the blocks click search and in the next web page choose DATA ACCES and then GO. Prescribe the user name and password and then choose the dates and area of interest.

RTOFS

To download te RTOFS global model solution go to http://polar.ncep.noaa.gov/global/data_access.shtml or http://nomads.ncep.noaa.gov:9090/dods/rtofs. The download in the second one is made via opendap. select the product and thenclick in download data.

Conversion

Bathymetry transition

Running tool SmoothBathymNesting.exe

Example of the input file SmoothBathymNesting.dat

!File  bathymetry of the external 3D solution
 FATHER_BATIM                : Father.dat
!Bathymetry File of MOHID solution
 SON_BATIM                   : Son.dat

!New Bathymetry File 
 NEW_SON_BATIM               : NewSon.dat

<begin_coef>
 !Name of generic property
 NAME                        : generic property  
 !Type of initialization used 
 INITIALIZATION_METHOD       : sponge  
         
 !0-external 3D solution, 1-MOHID solution
 DEFAULTVALUE                : 1                
 
 !sponge output
 SPONGE_OUT                  : 0
 !sponge cells number
 SPONGE_CELLS                : 10   
       
  !1-exponential, 2-linear
 SPONGE_EVOLUTION            : 2                
<end_coef>

Grib-Netcdf-Hdf5

NOAA/GFS

STEP 1: Grib to NetCDF

To convert grib files to NetCDF files create a batch file and write the follow comand line "java -Xmx1024m -classpath netcdfAll-4.3.jar ucar.nc2.dataset.NetcdfDataset -in gfs_4_20130415_0000_003.grb2 -out gfs_4_20130415_0000_003.nc > NCDumpLog.txt". The input file must be in the same folder of batch file.

STEP 2: NetCDF to HDF5

Running tool ConversionHDF5.exe

Example of the file ConvertToHDF5.dat

<begin_file>
   ACTION              : CONVERT NETCDF CF TO HDF5 MOHID
   HDF5_OUT            : 1
   OUTPUTFILENAME      : outfile.hdf5
   NETCDF_OUT          : 1
   OUTPUT_NETCDF_FILE  : outfile.nc
   WINDOW_OUT : 1173 1323 1428 1643 
   !is optional but usefull to generate smaller area for interpolation. In case of already extracted a small area durin the download data then change to WINDOW_OUT : 0.
 <<begin_time>>
   NETCDF_NAME         : time
 <<end_time>>
 <<begin_grid>>
   NETCDF_NAME_LAT     : lat
   NETCDF_NAME_LONG    : lon
   NETCDF_NAME_MAPPING : Temperature_height_above_ground
   MAPPING_LIMIT       : -10000
 <<end_grid>>
   PROPERTIES_NUMBER   : 8
 <<begin_field>>
   NETCDF_NAME         : u-component_of_wind_height_above_ground
   NAME                : wind velocity X
   UNITS               : m/s
   DESCRIPTION         : MOHID
   DIM                 : 2
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : v-component_of_wind_height_above_ground
   NAME                : wind velocity Y
   UNITS               : m/s
   DESCRIPTION         : MOHID
   DIM                 : 2
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : wind_modulus
   NAME                : wind modulus 
   UNITS               : m/s
   DESCRIPTION         : MOHID
   DIM                 : 2
   VECTOR_INTENSITY    : 1
   VECTOR_X            : wind velocity X
   VECTOR_Y            : wind velocity Y
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : Temperature_height_above_ground
   NAME                : air temperature
   UNITS               : oC
   DESCRIPTION         : MOHID
   DIM                 : 2
   ADD_FACTOR          : -273
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : Total_precipitation_surface_3_Hour_Accumulation
   NAME                : precipitation
   UNITS               : mm/h
   DESCRIPTION         : MOHID
   DIM                 : 2
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : Relative_humidity_height_above_ground
   NAME                : relative humidity
   UNITS               : -
   DESCRIPTION         : MOHID
   DIM                 : 2
   MULTIPLY_FACTOR     : 0.01
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : Downward_Short-Wave_Radiation_Flux_surface_3_Hour_Average
   NAME                : solar radiation
   UNITS               : W/m^2
   DESCRIPTION         : MOHID
   DIM                 : 2
 <<end_field>>
 <<begin_field>>
   NETCDF_NAME         : Pressure_reduced_to_MSL_msl
   NAME                : atmospheric pressure
   UNITS               : pa
   DESCRIPTION         : Malaca
   DIM                 : 2
 <<end_field>>
 <<begin_input_files>>
   !path to the input files
 <<end_input_files>> 
<end_file>

MyOcean and RTOFS

STEP 1: Grib to NetCDF

In case of download grib data use the same sample than that the one prescribed in GFS. If the data downloaded is already in NETCDF than go to Step 2.

STEP 2: NetCDF to HDF5

Running tool ConversionHDF5.exe

Example of the file ConvertToHDF5.dat

<begin_file>
    ACTION              : CONVERT NETCDF CF TO HDF5 MOHID
    HDF5_OUT            : 1
    OUTPUTFILENAME      : 20130416_rtofs_glo_3dz_nowcast_daily.hdf5
    NETCDF_OUT          : 1
    OUTPUT_NETCDF_FILE  : rtofs_glo_3dz_nowcast_daily.nc
    WINDOW_OUT : 1173 1323 1428 1643 
   !is optional but usefull to generate smaller area for interpolation. In case of already extracted a small area durin the download data then change to WINDOW_OUT : 0.
  <<begin_time>>
    NETCDF_NAME : time
  <<end_time>>
  <<begin_grid>>
    NETCDF_NAME_LAT     : lat
    NETCDF_NAME_LONG    : lon
    STARTS_180W         : 0
    NETCDF_NAME_MAPPING : temperature
    MAPPING_LIMIT       : 1.2676506E29
    MAPPING_INSTANT     : 2
    NETCDF_NAME_DEPTH   : lev
    INVERT_LAYER_ORDER  : 1
    BATHYM_FROM_MAP     : 1
    BATHYM_FILENAME     : Batim_rtofs_glo_3dz_nowcast_daily.dat
  <<end_grid>>
    PROPERTIES_NUMBER   : 5
  <<begin_field>>
    NETCDF_NAME         : temperature
    NAME                : temperature
    UNITS               : ºC
    DESCRIPTION         : MOHID
    DIM                 : 3
  <<end_field>>
  <<begin_field>>
    NETCDF_NAME         : salinity
    NAME                : salinity
    UNITS               : psu
    DESCRIPTION         : MOHID
    DIM                 : 3
  <<end_field>>
  
  <<begin_field>>
    NETCDF_NAME         : u
    NAME                : velocity U
    UNITS               : m/s
    DESCRIPTION         : MOHID
    DIM                 : 3
  <<end_field>>
  <<begin_field>>
    NETCDF_NAME         : v
    NAME                : velocity V
    UNITS               : m/s
    DESCRIPTION         : MOHID
    DIM                 : 3
  <<end_field>>
  <<begin_field>>
    NETCDF_NAME : velocity_modulus
    NAME                : velocity modulus
    UNITS               : m/s
    DESCRIPTION         : MOHID
    DIM                 : 3
    VECTOR_INTENSITY    : 1
    VECTOR_X            : velocity U
    VECTOR_Y            : velocity V
  <<end_field>>
  <<begin_input_files>>
    !path to the input files
  <<end_input_files>>
<end_file>

Interpolation

Vertical discretization of RTOFS and MyOcean model solutions correspond to the depth of the center of the cell. Since MOHID geometry must be provided in thickness the depths must be convertes to top of the faces cell and then to thickness layers. In order to avoid this the new method of interpolating grids allow to provide the depth of the center of the cells in ConvertToHDF5.dat instead to use a thickness calculated baing on the centers depth. Th both samples are provided bellow.

GFS to MOHID

This example perform linear horizontally interpolation (e.g., 2D) between GFS grid data and MOHID.

Running tool ConversionHDF5.exe

Sample of the file ConvertToHDF5.dat

<begin_file>
  ACTION                    : INTERPOLATE GRIDS
  TYPE_OF_INTERPOLATION     : 1 
  !Option 1 is bilinear and 3 triangulation
  INTERPOLATION3D           : 0
  FATHER_FILENAME           : ..\outdata\GFS_2011010100_2011011621.hdf5
  FATHER_GRID_FILENAME      : batim\GFS.dat
  OUTPUTFILENAME            : ..\outdata\Batim_Caribe_Colombia_5km.hdf5
  NEW_GRID_FILENAME         : batim\Batim_Caribe_Colombia_5km_GFS.dat 
  EXTRAPOLATE_2D            : 4
  EXTRAPOLATE_LIMIT         : -10000
<end_file>

RTOFS to MOHID

This example perform 2D horizontal and 3D vertical interpolation between RTOFS grid data and MOHID. In this sample is provided the depth of the centers cells in the file.dat.

Running tool ConversionHDF5.exe

Example of the file ConvertToHDF5.dat

<begin_file>
  ACTION                    : INTERPOLATE GRIDS
  DO_NOT_BELIEVE_MAP        : 1
  TYPE_OF_INTERPOLATION     : 1
  INTERPOLATION3D           : 1
  START                     : 2013 04 13 0 0 0
  END                       : 2013 04 18 0 0 0
  FATHER_FILENAME           : ..\work\20130410_rtofs_glo_3dz_nowcast_daily.hdf5
  FATHER_GRID_FILENAME      : ..\work\batim\Batim_RTOFS.dat
  OUTPUTFILENAME            : ..\work\Level2_RTOFS_13_18_04_2013.hdf5
  NEW_GRID_FILENAME         : ..\work\batim\Level2_.new
  EXTRAPOLATE_2D            : 4
  EXTRAPOLATE_LIMIT         : -10000
  FATHER_GEOMETRY           : ..\work\Geometry_RTOFS.dat 
  !A "false" geometry must be provide, but in reality uses the depths in the file.dat 
  NEW_GEOMETRY              : ..\work\Geometry_1.dat
  !MOHID geometry with thicknes layers
 <<BeginDepths>>
  0.0
  10.0
  20.0
  30.0
  50.0
  75.0
  100.0
  125.0
  150.0
  200.0
  250.0
  300.0
  400.0
  500.0
  600.0
  700.0
  800.0
  900.0
 1000.0
 1100.0
 1200.0
 1300.0
 1400.0
 1500.0
 1750.0
 2000.0
 2500.0
 3000.0
 3500.0
 4000.0
 4500.0
 5000.0
 5500.0
 <<EndDepths>>                          
<end_file>

MyOcean to MOHID

This example perform 2D horizontal and 3D vertical interpolation between MyOcean grid data and MOHID.

Running tool ConversionHDF5.exe

Example of the file ConvertToHDF5.dat

<begin_file>
  ACTION                    : INTERPOLATE GRIDS
  TYPE_OF_INTERPOLATION     : 1
  FATHER_FILENAME           :  ..\conv\MyOcean3D.hdf5
  FATHER_GRID_FILENAME      :  ..\conv\MyOceanMaxDepth.dat
  OUTPUTFILENAME            :  Level2_MyOcean_13-04_27-04_2013.hdf5

  START                     : 2013 04 12 12 0 0
  END                       : 2013 04 27 12 0 0 
  NEW_GRID_FILENAME         : Level2_.new

  FATHER_GEOMETRY           : ..\conv\MyOceanGeometry.dat !The geometry corresponds to thickness layers calculated basing on depth centers cells
  NEW_GEOMETRY              : geometry_1.dat              !The geometry corresponds to thickness layers converting the depth centers cells in faces top and then in thickness
  INTERPOLATION3D           : 1
  POLI_DEGREE               : 1
  DO_NOT_BELIEVE_MAP        : 0
  EXTRAPOLATE_2D            : 4
<end_file>

Boundary Conditions

Open boundary

Open boundary conditions are imposed in hydrodynamic module of MOHID. These differs from Level 1 to Level n of nested aplications. Level 1 is a 2D barotropic model usualy forced only with tide (no wind in atmosphere and InterfaceWaterAir module) with a slow connection. From Level 2 to Level n of nested domains the models are 3D baroclinic (e.g., include th density gradientes efects) and the OBC are resolved by imposing a Flow Relaxation Scheme (FRS) similar to the one presented by Marchesiello et al. (2001). The FRS is applied to temperature (T), salinity (S) and velocities (U, V) (Martinsen and Engedahl, 1987) being combined with a radiation scheme from Flather (1976) for the barotropic mode. The barotropic forces are turned on and the wind stress and atmospheric pressure terms imposed and connected slowly.

Level 1

Sample of the hydrodynamic file:

 BAROCLINIC                : 0
 SLOWSTART                 : 86400    !Connection of the tide slowly. Remove it in the continuous run
 CONTINUOUS                : 0        !Change to CONTINUOUS: 1 in the continuous run
 INITIAL_ELEVATION         : 1        !Remove it in the continuous run
 INITIAL_ELEVATION_VALUE   : 1.8      !Remove it in the continuous run
 TIDE                      : 1
 TIDEPOTENTIAL             : 1
 
 DATA_ASSIMILATION         : 0
 BRFORCE                   : 0
 SUBMODEL                  : 0
 
 WIND                      : 0
 ATM_PRESSURE              : 0
 BIHARMONIC                : 1
 BIHARMONIC_COEF           : 2e9     !BIHARMONIC_COEF = Dx^3/100
 RESIDUAL                  : 1
 ENERGY                    : 1
 OUTPUT_TIME               : 21600

Level 2

Sample of the hydrodynamic file:

 BAROCLINIC                : 1
 BAROCLINIC_POLIDEGREE     : 1
 ADV_METHOD_H              : 4
 ADV_METHOD_V              : 4
 TVD_LIMIT_H               : 4
 TVD_LIMIT_V               : 4
 VOLUME_RELATION_MAX       : 1.3
 CONTINUOUS                : 0      !Change to CONTINUOUS: 1 in the continuous run
 TIDE                      : 0
 TIDEPOTENTIAL             : 1
 DATA_ASSIMILATION         : 1
 BRFORCE                   : 1
 ATM_PRESSURE              : 1
 IMPOSE_INVERTED_BAROMETER : 1      !Activate the Inverted Barometer method
 RADIATION                 : 2
 LOCAL_SOLUTION            : 7      !OBC from submodel (Level 1) + field (MyOcean or RTOFS) + gauges (pressure effect from inverted barometer effect)
 SUBMODEL                  : 1
 MISSING_NULL              : 1
 SUBMODEL_EXTRAPOLATE      : 1
 SUBMODEL_FATHER_HOT_START : 1      !Change it to SUBMODEL_FATHER_HOT_START : 0 in the continuous runs 
 EXTERNAL_BAROTROPIC_2D    : 0
 RAMP                      : 1      !Start with baroclinic force null and only after a specific period the total force is compute. Remove it in the continuous run 
 RAMP_PERIOD               : 259200 !Remove it in the continuous run
 
 WIND                      : 2      !Using a ramp period for wind forcing. Change it to WIND: 1 in the continuous runs 
 WIND_SMOOTH_PERIOD        : 259200 !Remove it in the continuous run
 ATM_PRESSURE              : 1      !Connect pressure forcing slowly for a period of time. 
 ATM_PERIOD                : 259200 !Remove it in the continuous run
 FLATHER_COLD_PERIOD       : 432000 !Remove it in the continuous run
 BIHARMONIC                : 1
 BIHARMONIC_COEF           : 2e9    !BIHARMONIC_COEF = Dx^3/100

 RESIDUAL                  : 1
 ENERGY                    : 1
 OUTPUT_TIME               : 0   10800
 SURFACE_OUTPUT_TIME       : 0   900

Level 3 to Level n

Sample of the hydrodynamic file:

 BAROCLINIC              : 1
 BAROCLINIC_POLIDEGREE   : 1
 ADV_METHOD_H             : 4
 ADV_METHOD_V             : 4
 TVD_LIMIT_H              : 4
 TVD_LIMIT_V              : 4
 VOLUME_RELATION_MAX      : 1.3
 CONTINUOUS                : 0       !Change to CONTINUOUS: 1 in the continuous run
 TIDE                      : 0
 TIDEPOTENTIAL             : 1
 DATA_ASSIMILATION         : 1
 BRFORCE                   : 1
 ATM_PRESSURE              : 1
 IMPOSE_INVERTED_BAROMETER : 1
 RADIATION                 : 2
 LOCAL_SOLUTION            : 2      !OBC from submodel (Level 2)
 SUBMODEL                  : 1
 MISSING_NULL              : 1
 SUBMODEL_EXTRAPOLATE      : 1
 RAMP                      : 1      !Start with baroclinic force null and only after a specific period the total force is compute. Remove it in the continuous run  
 RAMP_PERIOD               : 259200 !Remove it in the continuous run
 
 WIND                      : 2      !Using a ramp period for wind forcing. Change it to WIND: 1 in the continuous run 
 WIND_SMOOTH_PERIOD        : 259200 !Remove it in the continuous run
 ATM_PRESSURE              : 1      !Connect pressure forcing slowly for a period of time. 
 ATM_PERIOD                : 259200 !Remove it in the continuous run
 BIHARMONIC                : 1
 BIHARMONIC_COEF           : 2e7    !BIHARMONIC_COEF = Dx^3/100

 RESIDUAL                  : 1
 ENERGY                    : 1
 OUTPUT_TIME               : 0   10800
 SURFACE_OUTPUT_TIME       : 0   900

Surface

To impose surface boundary conditions (e.g., wind stress, solar radiation, temperature, pressure etc.) in atmosphere module an example of the file is provided below.

Sample of the atmosphere file.

 OUTPUT_TIME             : 0. 3600.
<begin_rugosity>
 INITIALIZATION_METHOD   : CONSTANT
 DEFAULTVALUE            : 0.0025
<end_rugosity>
<beginproperty>
 NAME                    : wind velocity X
 UNITS                   : m/s
 DESCRIPTION             : wind velocity X interpolated from GFS model field
 DEFAULTVALUE            : 0.
 FILE_IN_TIME            : HDF
 FILENAME                : ..\..\..\GeneralData\GFS\Abril2013\Level2_10-04-2013_25-04-2013.hdf5
 TIME_SERIE              : 0
 OUTPUT_HDF              : 1
<endproperty>
<beginproperty>
 NAME                    : wind velocity Y
 UNITS                   : m/s
 DESCRIPTION             : wind velocity Y interpolated from GFS model field
 DEFAULTVALUE            : 0.
 FILE_IN_TIME            : HDF
 FILENAME                : ..\..\..\GeneralData\GFS\Abril2013\Level2_10-04-2013_25-04-2013.hdf5
 OUTPUT_HDF              : 1
<endproperty>
<beginproperty>
 NAME                    : air temperature
 UNITS                   : ºC
 DESCRIPTION             : Temperature interpolated from GFS model field
 DEFAULTVALUE            : 15.
 FILE_IN_TIME            : HDF
 FILENAME                : ..\..\..\GeneralData\GFS\Abril2013\Level2_10-04-2013_25-04-2013.hdf5
 TIME_SERIE              : 0
 OUTPUT_HDF              : 1
<endproperty>
<beginproperty>
 NAME                    : solar radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Solar radiation interpolated from GFS model field
 DEFAULTVALUE            : 0.0
 FILE_IN_TIME            : HDF
 FILENAME                : ..\..\..\GeneralData\GFS\Abril2013\Level2_10-04-2013_25-04-2013.hdf5
 TIME_SERIE              : 0
 REMAIN_CONSTANT         : 0
 OUTPUT_HDF              : 1
<endproperty>
<beginproperty>
 NAME                    : atmospheric pressure
 UNITS                   : Pa
 DESCRIPTION             : Atmospheric pressure interpolated from GFS model field
 DEFAULTVALUE            : 0.
 FILE_IN_TIME            : HDF
 FILENAME                : ..\..\..\GeneralData\GFS\Abril2013\Level2_10-04-2013_25-04-2013.hdf5
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : relative humidity
 UNITS                   : fraction
 DESCRIPTION             : Constant value
 DEFAULTVALUE            : 0.55
 TIME_SERIE              : 0
 OUTPUT_HDF              : 1
<endproperty>
<beginproperty>
 NAME                    : cloud cover
 UNITS                   : %
 DESCRIPTION             : Constant value
 DEFAULTVALUE            : 50.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 1
<endproperty>

Ocean-Atmosphere Heat Fluxes

Sensible/latent heat is computed in Module InterfaceWaterAir based in the atmospheric parameters (e.g.,wind stress, solar radiation, temperature, pressure etc.) prescribed in the atmosphere module. An example of the file is provided below.

Sample of the InterfaceWaterAir file.

 OUTPUT_TIME             : 0. 3600.
<begin_rugosity>
 INITIALIZATION_METHOD   : CONSTANT
 DEFAULTVALUE            : 0.0025
 REMAIN_CONSTANT         : 0
<end_rugosity>
<beginproperty>
 NAME                    : wind shear velocity
 UNITS                   : m/s
 DESCRIPTION             : Computed wind shear velocity
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : wind stress X
 UNITS                   : N/m2
 DESCRIPTION             : Computed wind stress X
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 TIME_SERIE              : 0
 DEFAULTVALUE            : 0.
 DEFINE_CDWIND           : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : wind stress Y
 UNITS                   : N/m2
 DESCRIPTION             : Computed wind stress Y
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 TIME_SERIE              : 0
 DEFAULTVALUE            : 0.
 DEFINE_CDWIND           : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : latent heat
 UNITS                   : W/m^2
 DESCRIPTION             : Computed latent heat
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : sensible heat
 UNITS                   : W/m^2
 DESCRIPTION             : Computed sensible heat
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : surface radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Computed infrared radiation
 ALBEDO                  : 0.05 
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : net long wave radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Computed net long wave radiation
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : downward long wave radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Computed downward long wave radiation
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : downward long wave radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Computed downward long wave radiation
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : upward long wave radiation
 UNITS                   : W/m^2
 DESCRIPTION             : Computed upward long wave radiation
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>
<beginproperty>
 NAME                    : non solar flux
 UNITS                   : W/m^2
 DESCRIPTION             : Computed infrared radiation
 FILE_IN_TIME            : NONE
 REMAIN_CONSTANT         : 0
 DEFAULTVALUE            : 0.
 TIME_SERIE              : 0
 OUTPUT_HDF              : 0
<endproperty>

Initial conditions and Spin up

For the spin-up procedure, a methodology based on a slow connection of the forcing terms (baroclinic force, winds tress, atmospheric pressure) is used. This methodology consists of defining an initial condition where the initial fields of salinity and temperature are interpolated from the external 3D solution (MyOcean or RTOFS), a null velocity field is assumed, and a SSH field with null gradient is also considered. A coefficient that varies linearly between 0 and 1 along the “connection” period of 5 days is multiplied by the baroclinic force and wind stress. Because the forces are slowly connected, the velocity reference solution of the OBC also needs to be slowly connected. The nudging term in the momentum equation is multiplied by a coefficient C given by:

C=(Elapsed Time/Connection Period)^4;     Elapsed Time<Connection Period

C=1                                 ;     Elapsed Time>=Connection Period

In this way, the velocity field near the boundary also converges slowly to the reference solution. To minimize the perturbations suffered by the initial condition of salinity and temperature along the spin-up period, a relaxation period variable in time was also assumed for these properties. The idea is to assume a relaxation period that increases with time; this way, in the beginning of the run the temperature and salinity fields have a stronger nudging when the external and internal activity is more intense due to the spin-up process. In the end of the spin-up period, the nudging in the model interior (out of the FRS area) is null. For the forces, a connection coefficient was assumed with a linear evolution over 5 days. For the reference solution a quadratic evolution was imposed. For the slow connection of the forcing mechanisms, the methodology followed by Mellor (2004) for the baroclinic force was assumed. This evolution allows, in the first instants, a strong nudging across the entire domain. With time, the model tends to be free except in the flow relaxation scheme area.

Initial conditions of salinity and temperature are imposed in WaterProperties module of MOHID. These differs from Level 1 to Level n of nested aplications. Level 1 is a 2D barotropic model and does not use the calculus of density fields (no keywords in WaterProperties file). From Level 2 to Level n of nested domains the models are 3D baroclinic (e.g., include th density gradientes efects) and the initial cnditons are prescribed by imposing a densitiy 3D field.

Level 2

Sample of the WaterProperties file:

 OUTPUT_TIME              : 0 10800
 SURFACE_OUTPUT_TIME      : 0 900
 ADV_METHOD_H             : 4
 ADV_METHOD_V             : 4
 TVD_LIMIT_H              : 4
 TVD_LIMIT_V              : 4
 VOLUME_RELATION_MAX      : 1.3
<beginproperty>
 NAME                     : salinity
 UNITS                    : ºC
 DESCRIPTION              : MyOcean Interpolated results
 DEFAULTVALUE             : 34.895
 OLD                      : 0   !Change it to OLD: 1 in the continuous run 
 TYPE_ZUV                 : z
 INITIALIZATION_METHOD    : HDF !3D salinity field interoplated to MOHID grid domain
 FILENAME                 : ..\..\..\GeneralData\MyOcean\Level2_MyOcean_13-04_27-04_2013.hdf5
 ADVECTION_DIFFUSION      : 1
 DATA_ASSIMILATION        : 1
 BOUNDARY_CONDITION       : 4   !Null gradient at the open boundary
 OUTPUT_HDF               : 1
 OUTPUT_SURFACE_HDF       : 1
<endproperty>
<beginproperty>
 NAME                     : temperature
 UNITS                    : ºC
 DESCRIPTION              : MyOcean Interpolated results
 DEFAULTVALUE             : 16.
 OLD                      : 0   !Change it to OLD: 1 in the continuous run 
 TYPE_ZUV                 : z
 INITIALIZATION_METHOD    : HDF !3D salinity field interoplated to MOHID grid domain
 FILENAME                 : ..\..\..\GeneralData\MyOcean\Level2_MyOcean_13-04_27-04_2013.hdf5
 ADVECTION_DIFFUSION      : 1
 SURFACE_FLUXES           : 1
 DATA_ASSIMILATION        : 1
 BOUNDARY_CONDITION       : 4   !Null gradient at the open boundary
 OUTPUT_HDF               : 1
 OUTPUT_SURFACE_HDF       : 1
<endproperty>

Level 3 to Level n

Sample of the WaterProperties file:

 OUTPUT_TIME              : 0 10800
 SURFACE_OUTPUT_TIME      : 0 900
 ADV_METHOD_H             : 4
 ADV_METHOD_V             : 4
 TVD_LIMIT_H              : 4
 TVD_LIMIT_V              : 4
 VOLUME_RELATION_MAX      : 1.3
<beginproperty>
 NAME                     : salinity
 UNITS                    : ºC
 DESCRIPTION              : MyOcean Interpolated results
 DEFAULTVALUE             : 34.895
 OLD                      : 0 !Change it to OLD: 1 in the continuous run
 TYPE_ZUV                 : z
 ADVECTION_DIFFUSION      : 1
 DATA_ASSIMILATION        : 1
 BOUNDARY_CONDITION       : 5 !Submodel (Level 2)
 SUBMODEL                 : 1
 SUBMODEL_INI             : 1 !Change it to SUBMODEL_INI: 0 in the continuous run
 SUBMODEL_EXTRAPOLATE     : 1
 OUTPUT_HDF               : 1
 OUTPUT_SURFACE_HDF       : 1
<endproperty>
<beginproperty>
 NAME                     : temperature
 UNITS                    : ºC
 DESCRIPTION              : MyOcean Interpolated results
 DEFAULTVALUE             : 16.
 OLD                      : 0 !Change it to OLD: 1 in the continuous run
 TYPE_ZUV                 : z
 ADVECTION_DIFFUSION      : 1
 SURFACE_FLUXES           : 1
 DATA_ASSIMILATION        : 1
 BOUNDARY_CONDITION       : 5 !Submodel (Level 2)
 SUBMODEL                 : 1
 SUBMODEL_INI             : 1 !Change it to SUBMODEL_INI: 0 in the continuous runs 
 SUBMODEL_EXTRAPOLATE     : 1
 OUTPUT_HDF               : 1
 OUTPUT_SURFACE_HDF       : 1
<endproperty>

Usual mistakes and known limitations

If errors occurs after MOHID project implementation with the procedements provided above then check the following:

1. The ratio between grids can not be higher than 1/5;

2. In the open boundaries cannot exist intertidal areas;

3. To choose the open boundaries delimitation avoid areas with big diferences in topography;

4. Deviate the open boundaries far away from areas with big velocities jets;

5. If noisy is created in the open boundary of large model domain (the ones that simulate the tide only) close some cells in the boundary with land;

6. Check if the interpolations of 3D fields were performed with double precision;