DoLoops performance in Fortran
From MohidWiki
What is the best performance that Fortran can give when computing do-loops over large matrices? A single triple-do-loop test-case was implemented with matrix size ranging from 1M to 216M four-byte units. The test-case below shows a 400% performance increase when looping over (k,j,i) insteado of (i,j,k). The test-case shows that a 300% performance increase occur when using one openmp directive in a quad-core processor (i7-870).
Test-case
Hardware
- Intel Core i7 - 870
- 8 GB Ram
Code
- The main program
program DoloopsOpenmp
use moduleDoloopsOpenmp, only: makeloop
implicit none
integer, dimension(:,:,:), pointer :: mycube
integer :: M = 1
real :: elapsedtime
real :: time = 0.0
do while (M < 1000)
write(*,*) 'Insert the cube size M (or insert 1000 to exit): '
read(*,*) M
if (M > 999) exit
allocate(mycube(1:M,1:M,1:M))
!Tic()
time = elapsedtime(time)
call makeloop(mycube)
!Toc()
time = elapsedtime(time)
write(*,10) time
write(*,*)
deallocate(mycube)
nullify(mycube)
end do
10 format('Time elapsed: ',F6.2)
end program DoloopsOpenmp
!This function computes the time
real function elapsedtime(lasttime)
integer :: count, count_rate
real :: lasttime
call system_clock(count, count_rate)
elapsedtime = count * 1.0 / count_rate - lasttime
end function elapsedtime
- The module
module moduleDoloopsOpenmp
use omp_lib
implicit none
private
public :: makeloop
contains
subroutine makeloop(cubicmatrix)
!Arguments --------------
integer, dimension(:,:,:), pointer :: cubicmatrix
!Local variables --------
integer :: i, j, k, lb, ub
lb = lbound(cubicmatrix,3)
ub = ubound(cubicmatrix,3)
!$OMP PARALLEL PRIVATE(i,j,k)
!$OMP DO
do k = lb, ub
do j = lb, ub
do i = lb, ub
cubicmatrix(i,j,k) = cubicmatrix(i,j,k) + 1
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
end subroutine makeloop
end module moduleDoloopsOpenmp
Results
- Full results
- Looking only at the results with STATIC/DYNAMIC/CHUNK variations.
---------------------------- DO (i,j,k) / NO CHUNK ---------------------------- Table A.1 - Debug do(i,j,k) Size Time 100 0.04 200 0.37 300 1.58 400 7.60 500 19.66 600 41.65 Table A.2 - Debug openmp without !$OMP PARALLEL directives do(i,j,k) Size Time 100 0.04 200 0.37 300 1.58 400 7.27 500 19.34 600 41.34 Table A.3 - Debug openmp with one !$OMP PARALLEL DO directive do(i,j,k) Size Time 100 0.02 200 0.19 300 0.70 400 1.86 500 4.05 600 7.83 ---------------------------- DO (k,j,i) / NO CHUNK ---------------------------- Table B.1 - Debug do(k,j,i) Size Time 100 0.04 200 0.31 300 1.22 400 3.36 500 7.55 600 14.88 Table B.2 - Debug openmp without !$OMP PARALLEL directives do(k,j,i) Size Time 100 0.04 200 0.31 300 1.21 400 3.36 500 7.82 600 15.07 Table B.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.09 300 0.36 400 0.94 500 2.04 600 3.89 ---------------------------- DO (k,j,i) / STATIC CHUNK = (UBOUND - LBOUND) / NTHREADS + 1 ---------------------------- Table C.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.15 300 0.42 400 1.03 500 2.12 600 3.97 ---------------------------- DO (k,j,i) / STATIC CHUNK = 10 ---------------------------- Table D.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.16 300 0.43 400 1.04 500 2.18 600 4.05 ---------------------------- DO (k,j,i) / DYNAMIC CHUNK = 10 ---------------------------- Table E.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.01 200 0.10 300 0.36 400 0.93 500 2.01 600 3.89 ---------------------------- DO (k,j,i) / DYNAMIC CHUNK = (UBOUND - LBOUND) / NTHREADS + 1 ---------------------------- Table F.3 - Debug openmp with one !$OMP PARALLEL DO directive do(k,j,i) Size Time 100 0.02 200 0.09 300 0.39 400 1.04 500 2.14 600 4.00
Conclusions
- do(k,j,i) Vs do(i,j,k) ==> 2 to 4 times faster!
- dynamic small chunks, or no chunk at all yield 10% increased performance over large dynamic chunks. Probably better off with no-chunk.
- More test-cases representing different scenarios of do-loops may yield different choices of CHUNK/scheduling.